The C. elegans POU-domain transcription factor UNC-86 regulates the tph-1 tryptophan hydroxylase gene and neurite outgrowth in specific serotonergic neurons.

نویسندگان

  • Ji Ying Sze
  • Shenyuan Zhang
  • Jie Li
  • Gary Ruvkun
چکیده

A fundamental question in developmental neurobiology is how a common neurotransmitter is specified in different neuronal types?. We describe cell-specific regulation of the serotonergic phenotype by the C. elegans POU-transcription factor UNC-86. We show that unc-86 regulates particular aspects of the terminal neuronal identity in four classes of serotonergic neurons, but that the development of the ADF serotonergic neurons is regulated by an UNC-86-independent program. In the NSM neurons, the role of unc-86 is confined in late differentiation; the neurons are generated but do not express genes necessary for serotonergic neurotransmission. unc-86-null mutations affect the expression in NSM of tph-1, which encodes the serotonin synthetic enzyme tryptophan hydroxylase, and cat-1, which encodes a vesicular transporter that loads serotonin into synaptic vesicles, suggesting that unc-86 coordinately regulates serotonin synthesis and packaging. However, unc-86-null mutations do not impair the ability of NSM to reuptake serotonin released from the ADF serotonergic chemosensory neurons and this serotonin reuptake is sensitive to the serotonin reuptake block drugs imipramine and fluoxetine, demonstrating that serotonin synthesis and reuptake is regulated by distinct factors. The NSM neurons in unc-86-null mutants also display abnormal neurite outgrowth, suggesting a role of unc-86 in regulating this process as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A neuronal signaling pathway of CaMKII and Gqα regulates experience-dependent transcription of tph-1.

Dynamic serotonin biosynthesis is important for serotonin function; however, the mechanisms that underlie experience-dependent transcriptional regulation of the rate-limiting serotonin biosynthetic enzyme tryptophan hydroxylase (TPH) are poorly understood. Here, we characterize the molecular and cellular mechanisms that regulate increased transcription of Caenorhabditis elegans tph-1 in a pair ...

متن کامل

Caenorhabditis elegans TRPV ion channel regulates 5HT biosynthesis in chemosensory neurons.

Serotonin (5HT) is a pivotal signaling molecule that modulates behavioral and endocrine responses to diverse chemical and physical stimuli. We report cell-specific regulation of 5HT biosynthesis by transient receptor potential V (TRPV) ion channels in C. elegans. Mutations in the TRPV genes osm-9 or ocr-2 dramatically downregulate the expression of the gene encoding the 5HT synthesis enzyme try...

متن کامل

The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types.

Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain tr...

متن کامل

Cell-Autonomous Gβ Signaling Defines Neuron-Specific Steady State Serotonin Synthesis in Caenorhabditis elegans

Heterotrimeric G proteins regulate a vast array of cellular functions via specific intracellular effectors. Accumulating pharmacological and biochemical studies implicate Gβ subunits as signaling molecules interacting directly with a wide range of effectors to modulate downstream cellular responses, in addition to their role in regulating Gα subunit activities. However, the native biological ro...

متن کامل

Activity of the Caenorhabditis elegans UNC-86 POU transcription factor modulates olfactory sensitivity.

The activity of transcription factors modulates several neural pathways that mediate complex behaviors. We describe here the role of the POU transcription factor UNC-86 in the olfactory behavior of Caenorhabditis elegans. unc-86-null mutants are defective in response to odor attractants but avoid odor repellents normally. Continuous UNC-86 activity is necessary for maintenance of odortaxis beha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 129 16  شماره 

صفحات  -

تاریخ انتشار 2002